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1. INTRODUCTION   

           An indefinite inner product in ℂ𝑛 is a conjugate symmetric sesquilinear form [𝑥, 𝑦] together with the regularity 

condition that [𝑥, 𝑦] = 0, ∀𝑦 ∈ ℂ𝐽
𝑛 only when 𝑥 = 0. Any indefinite inner product is associated with a unique invertible complex 

matrix 𝐽 (called a weight) such that [𝑥, 𝑦] = ⟨𝑥, 𝐽𝑦⟩, where ⟨⋅,⋅⟩ denotes the Euclidean inner product on ℂ𝑛. We also make an 

additional assumption on 𝐽, that is, 𝐽2 = 𝐼, to present the results with much algebraic ease. 

    Investigations of linear maps on indefinite inner product employ the usual multiplication of matrices which is induced by the 

Euclidean inner product of vectors ([2],[6]). This causes a problem as there are two different values for dot product of vectors. To 

overcome this difficulty, Kamaraj, Ramanathan and Sivakumar introduced a new matrix product called indefinite matrix 

multiplication and investigated some of its properties in [6]. More precisely, the indefinite matrix product of two matrices 𝐴 and 𝐵 

of sizes 𝑚 × 𝑛 and 𝑛 × 𝑙 complex matrices, respectively, is defined to be the matrix 𝐴 ∘ 𝐵 = 𝐴𝐽𝑛𝐵. The adjoint of 𝐴, denoted by 

𝐴[∗] is defined to be the matrix 𝐽𝑛𝐴∗𝐽𝑚, where 𝐽𝑚 and 𝐽𝑛 are weights. 

   Many properties of this product are similar to that of the usual matrix product ([6]). Moreover, it not only rectifies the 

difficulty indicated earlier, but also enables us to recover some interesting results in indefinite inner product spaces in a manner 

analagous to that of the Euclidean case. Kamaraj, Ramanathan and Sivakumar also established in [6] that in the setting of indefinite 

inner product spaces, the indefinite matrix product is more appropriate that the usual matrix product. Recall that the Moore-Penrose 

inverse exists if and only if 𝑟𝑎𝑛𝑘(𝐴𝐴∗) = 𝑟𝑎𝑛𝑘(𝐴∗𝐴) = 𝑟𝑎𝑛𝑘(𝐴). If we take 𝐴 = (
1 1
1 1

) , 𝐽 = (
1 0
0 −1

), then 𝐴𝐴[∗] and 𝐴[∗]𝐴 

are both the zero matrix and so 𝑟𝑎𝑛𝑘(𝐴𝐴[∗]) < 𝑟𝑎𝑛𝑘(𝐴), thereby proving that the Moore-Penrose inverse doesnot exist with 

respect to the usual matrix product. However, it can be easily verified that with respect to the indefinite matrix product, 𝑟𝑎𝑛𝑘(𝐴 ∘

𝐴[∗]) = 𝑟𝑎𝑛𝑘(𝐴[∗] ∘ 𝐴) = 𝑟𝑎𝑛𝑘(𝐴).Thus, the Moore-Penrose 𝐽-inverse with real or complex entries exists over an indefinite inner 

product, whereas a similar result is false with respect to the usual matrix multiplication. It is therefore really pertinant to extend the 

study of generalized inverses to the setting of indefinite inner product. 

  In this paper we study about the positive semidefinite matrices in I. We have also established the characterization theorems in 

I.  Further, we have determined the properties of block matrices over indefinite inner product space. The following notations are 

used in this paper, I denotes the indefinite inner product space, ℂ𝑚×𝑛, 𝑅(𝐴), 𝑁(𝐴) denotes the class of 𝑚 × 𝑛 matrices, range 

space, null space in Euclidean space and ℂ𝐽𝑚,𝐽𝑛
𝑚×𝑛 , 𝑅𝑎(𝐴), 𝑁𝑢(𝐴) denotes the class of 𝑚 × 𝑛 matrices, range space, null space in 

indefinite inner product space respectively. 

 

2. PRELIMINARIES 
We first recall the notion of an indefinite multiplication of matrices. 

Definition 2.1. [5]1  Let A ∈ ℂJm,Jn

m×n , B ∈ ℂJn,Jk

n×k . Let Jn be an arbitrary but fixed n × n complex matrix such that Jn = Jn
∗ =

Jn
−1. The indefinite matrix product of A and B (relative to Jn) is defined by A ∘ B = AJnB.   

Definition2 2.2. [5]  For A ∈ ℂJm,Jn

m×n , A[∗] = JnA∗Jm is the adjoint of A relative to Jn and Jm.   

Definition3 2.3. [5]  A matrix A ∈ ℂJn

n×n is said to be J-invertible if there exists X ∈ ℂJn

n×n, such that A ∘ X = X ∘ A = Jn such 

an X is denoted by A[−1] = JA−1J.   

Remark 2.4. [5] 4 For the identity matrix J, it reduces to a generalized inverse of A and AJ{1} = A{1}. It can be easily verified 

that X is a generalized inverse of A under the indefinite matrix product if and only if JnX Jm is a generalized inverse of A under the 

usual product of matrices. Hence AJ{1} = { X ∶ JnX Jm is a generalized inverse of A }.   

Definition 2.5. [5]5  For A ∈ ℂJm,Jn

m×n , X ∈ ℂJn,Jm

n×m  is called the Moore - Penrose J-inverse of A if it satisfies the following 

equations:(i)A ∘ X ∘ A = A, (ii)X ∘ A ∘ X = X, (iii)(A ∘ X)[∗] = A ∘ X, (iv)(X ∘ A)[∗] = X ∘ A. Such an X is denoted by A[†] and 

represented as A[†] = JnA†Jm.   

Definition 2.6. [5]6  The range space of A ∈ ℂJm,Jn

m×n  is defined by 𝑅𝑎(𝐴) = {𝑦 = 𝐴 ∘ 𝑥 ∈ ℂ𝑚: 𝑥 ∈ ℂ𝑛}. The null space of A ∈

ℂJm,Jn

m×n  is defined by 𝑁𝑢(𝐴) = {𝑥 ∈ ℂ𝑛: 𝐴 ∘ 𝑥 = 0}.   
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Property 2.7. [5]7  Let A ∈ ℂJn

m×n. Then 

     (i)(A[∗])[∗] = A. 

     (ii)(A[†])[†] = A. 

     (iii)(AB)[∗] = B[∗]A[∗]. 

     (iv)Ra(A[∗]) = Ra(A[†]). 

     (v)Ra(A ∘ A[∗]) = Ra(A), Ra(A[∗] ∘ A) = Ra(A[∗]). 

     (vi)Nu(A ∘ A[∗]) = Nu(A[∗]), Nu(A[∗] ∘ A) = Nu(A). 

Definition 2.8. [5]8  A is range symmetric in I  if and only if Ra(A) = Ra(A[∗]) (or) equivalently Nu(A) = Nu(A[∗]).   

Remark 2.9. [5]9  In particular for J = In, this reduces to the definition of range symmetric matrix in unitary space (or) 

equivalently to an EP matrix.   

Theorem 2.10. [5] 10 For A ∈ CJn

n×n, the following are equivalent: 

(i) A is range symmetric in I. 

(ii) AJ is EP. 

(iii) JA is EP. 

(iv) Nu(A) = Nu(A[∗]). 

(v) A ∘ A[†] = A[†] ∘ A. 

(vi) (A†A)[∗] = JA†AJ = AA†. 

(vii)  A is J-EP.   

  

Theorem11 2.11. [1] Let A, B ∈ ℂn×n then the following equivalence hold 

(i)  R(A) ⊆ R(A∗) ⇔ N(A) ⊆ N(C) ⇔ C = CA(1)A for every A(1) ∈ A{1} 

(ii)  R(B) ⊆ R(A) ⇔ N(A∗) ⊆ N(B∗) ⇔ B = AA(1)B for every A(1) ∈ A{1} 

(iii)  CA(1)B is invariant for every A(1) ∈ A{1}   

 

Lemma 122.12. [3]  Let A and B be matrices in I  then N(A∗) ⊆ N(B∗) if and only if Nu(A[∗]) ⊆ Nu(B[∗]).   

 

3. CHARACTERIZATION OF POSITIVE SEMIDEFINITE MATRICES 

Definition 3.1 13 A matrix A ∈ ℂn×n is said to be Positive semidefinite(PSD) in I  denoted as A ≥I 0 ⇔ A is J − EP and 

[Ax, x] ≥ 0, for all x ∈ ℂn.   

 

Theorem 3.214  For 𝐴 ∈ ℂ𝑛×𝑛 , 𝐴 ≥𝐼 0 ⇔ 𝐽𝐴 ≥ 0 ⇔ 𝐴𝐽 ≥ 0.   

Proof. Suppose 𝐴 ≥I 0, then by Definition 3.1, 𝐴 is 𝐽 − 𝐸𝑃 and [𝐴𝑥, 𝑥] ≥ 0, for all 𝑥 ∈ ℂ𝑛. 

From Theorem 2.10 it follows that both 𝐽𝐴 and 𝐴𝐽 are 𝐸𝑃. 

𝐴 ≥I 0 ⇔ [𝐴𝑥, 𝑥] ≥ 0 and 𝐴 is 𝐽 − 𝐸𝑃 

⇔ 〈𝐴𝑥, 𝐽𝑥〉 ≥ 0 and 𝐴 is 𝐽 − 𝐸𝑃 

⇔ 〈𝐽𝐴𝑥, 𝑥〉 ≥ 0 and 𝐽𝐴 is 𝐸𝑃 

⇔ 𝐽𝐴 ≥ 0. 

Similarly, 𝐴 ≥I 0 ⇔ 𝐴𝐽 ≥ 0 can be proved.                                                   ■ 

  

Corollary 3.315  For 𝐴 ∈ ℂ𝑛×𝑛, 𝐴 ≥𝐼 0 ⇔ 𝐴 = 𝑆[∗]𝐽𝑆, for some 𝑆 ∈ ℂ𝑛×𝑛.   

Proof. 𝐴 ≥I 0 ⇔ 𝐽𝐴 ≥ 0 ⇔ 𝐽𝐴 = 𝑆∗𝑆 ⇔ 𝐴 = 𝐽𝑆∗𝐽2𝑆 ⇔ 𝐴 = 𝑆[∗]𝐽𝑆.                         ■ 

  

Corollary 3.416  For 𝐴 ∈ ℂ𝑛×𝑛, 𝐴 ≥𝐼 0 ⇔ 𝐴[∗] ≥𝐼 0   

Proof. Since 𝐴 ≥I 0, by Definition (3.1), 𝐴 is 𝐽 − 𝐸𝑃 and hence 𝑅𝑎(𝐴) = 𝑅𝑎(𝐴[∗]), 

by Theorem 3.4 [4] and Property (2.7) we get 𝐴[∗] is 𝐽 − 𝐸𝑃. 

For any 𝑥 ∈ ℂ𝑛, [𝐴[∗]𝑥, 𝑥] = [(𝑆[∗]𝐽𝑆)[∗]𝑥, 𝑥] = [𝑥, (𝑆[∗]𝐽𝑆)𝑥] = [𝑆𝑥, 𝐽𝑆𝑥] = 〈𝑆𝑥, 𝑆𝑥〉 
= ||𝑆𝑥||2 ≥ 0 ⇒ [𝐴[∗]𝑥, 𝑥] ≥ 0. Thus 𝐴 ≥I 0 ⇒ 𝐴[∗] ≥I 0, 𝐴[∗] ≥I 0 ⇒ (𝐴[∗])[∗] = 𝐴 ≥I 0 follows from the above steps and 

using Property (2.7), we have 𝐴[∗] ≥I 0 ⇒ 𝐴 ≥I 0.           ■ 

  

Theorem 3.517  For 𝐴 ∈ ℂ𝑛×𝑛 , 𝐴 ≥𝐼 0 then for any 𝑃, 𝑃[∗]𝐴𝑃 ≥𝐼 0.   

Proof. Since 𝐴 ≥I 0, by Definition (3.1), 𝑅𝑎(𝐴) = 𝑅𝑎(𝐴[∗]) and [𝐴𝑥, 𝑥] ≥ 0, for all 𝑥 ∈ ℂ𝑛. 

Let 𝐵 = 𝑃[∗]𝐴𝑃, 𝑅𝑎(𝐵[∗]) = 𝑅𝑎((𝑃[∗]𝐴𝑃)[∗]) = 𝑅𝑎(𝑃[∗]𝐴[∗]𝑃) = 𝑅𝑎(𝑃[∗]) = 𝑅𝑎(𝑃[∗]𝐴𝑃) = 𝑅𝑎(𝐵), which implies 𝐵 is 𝐽 −
𝐸𝑃. 

Now, for 𝑥 ∈ ℂ𝑛 , [𝐵𝑥, 𝑥] = [𝑃[∗]𝐴𝑃𝑥, 𝑥] = [𝐴𝑃𝑥, 𝑃𝑥] = [𝐴𝑦, 𝑦] ≥ 0 , where 𝑦 = 𝑃𝑥 , which implies 𝐵 = 𝑃[∗]𝐴𝑃 ≥I 0 .                                                                     

■ 

Theorem 3.618  For 𝐴 ∈ ℂ𝑛×𝑛 , 𝐴 ≥𝐼 0 ⇔ 𝐴[†] ≥𝐼 0.   

Proof. 𝐴 ≥I 0 ⇔ 𝐽𝐴 ≥ 0                                                     [By Theorem 3.2] 

                            ⇔ (𝐽𝐴)[†] ≥ 0 

                            ⇔ 𝐴[†]𝐽 ≥ 0 

                            ⇔ 𝐴[†] ≥I 0.                                                                  ■ 
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4. POSITIVE SEMIDEFINITE BLOCK MATRICES IN I . 

In this section, we derive equivalent conditions for a block matrix to be positive semidefinite(psd) in I  and establish formulae 

for {1}-inverse, {1,2}-inverse, {1,3}-inverse and {1,4}-inverse of positive semidefinite block matrices in I.   

 

Lemma 4.1 [1]19  Let 𝑀 = (
𝐴 𝐵
𝐵∗ 𝐷

) be a psd matrix where 𝐴, 𝐷 are Hermitian. Then 𝑀 ≥ 0 ⇔ 𝐴 ≥ 0, 𝐴𝐴†𝐵 = 𝐵 and 

𝐷 − 𝐵∗𝐴†𝐵 ≥ 0.   

  

Theorem 4.220  Let 𝑀 = (
   𝐴    𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) ∈ ℂ(𝑚+𝑛)×(𝑚+𝑛)  then 𝑀 ≥𝐼 0 ⇔ 𝐴 ≥ 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁𝑢(𝐴[∗]) ⊆

𝑁𝑢((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋.   

Proof. 𝑀 ≥I 0 ⇔ 𝐽𝑀 ≥ 0                                            [ By Theorem 3.2 ] 

                ⇔ (
𝐽𝑚 0
0 𝐽𝑛

) (
   𝐴     𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) ≥ 0 

                ⇔ (
   𝐽𝑚𝐴    𝐽𝑛𝐴𝑋

𝐽𝑚𝑋[∗]𝐴 𝐽𝑛𝑋[∗]𝐴𝑋
) ≥ 0 

                ⇔  𝐽𝑚𝐴 ≥ 0, 𝐽𝑛𝑋[∗]𝐴 = (𝐽𝑚𝐴𝑋)∗, (𝐽𝑚𝐴)(𝐽𝑚𝐴)†(𝐽𝑚𝐴𝑋) = 𝐽𝑚𝐴𝑋  

                    and 𝑋[∗]𝐴𝑋 − 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 0                            [ By Lemma 4.1 ] 

                ⇔ 𝐽𝑚𝐴 ≥ 0, 𝐽𝑛𝑋[∗]𝐴 = (𝐴𝑋)∗𝐽𝑚 ,  𝐽𝑚𝐴𝐴†𝐴𝑋 = 𝐽𝑚𝐴𝑋 and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. 

𝑀 ≥I 0 ⇔ 𝐽𝑚𝐴 ≥ 0,  𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝐴𝐴†𝐴𝑋 = 𝐴𝑋 and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. 

By using Theorem 3.2, Theorem 2.11 and Lemma 2.12, the above conditions reduces to 

𝑀 ≥I 0 ⇔ 𝐽𝑚𝐴 ≥I 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁𝑢(𝐴[∗]) ⊆ 𝑁𝑢((𝐴𝑋)[∗] and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋.    ■ 

  

Lemma 4.321  Let 𝑀 = (
    𝐴     𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

)  with 𝐴  is 𝐽 − 𝐸𝑃  and 𝑋[∗]𝐴 = (𝐴𝑋)[∗]  then 𝑁𝑢(𝐴[∗]) ⊆ 𝑁𝑢((𝐴𝑋)[∗]) ⇔

𝑁𝑢(𝐴) ⊆ 𝑁𝑢(𝑋[∗]𝐴)   

Proof. Since 𝐴 is 𝐽 − 𝐸𝑃 then 𝑁𝑢(𝐴[∗]) ⊆ 𝑁𝑢((𝐴𝑋)[∗]) ⇔ 𝑁𝑢(𝐴) = 𝑁𝑢(𝐴[∗]) ⊆ 𝑁𝑢((𝐴𝑋)[∗]) = 𝑁𝑢(𝑋[∗]𝐴).    

𝑁𝑢(𝐴[∗]) ⊆ 𝑁𝑢((𝐴𝑋)[∗]) ⇔ 𝑁𝑢(𝐴) ⊆ 𝑁𝑢(𝑋[∗]𝐴).                                            ■ 

Theorem 4.2 can be reformulated by using Lemma 4.3 as follows 

Theorem 4.4 Let 𝑀 = (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) ∈ ℂ(𝑚+𝑛)×(𝑚+𝑛) then 𝑀 ≥𝐼 0 ⇔ 𝐴 ≥ 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁𝑢(𝐴) ⊆ 𝑁𝑢(𝑋[∗]𝐴) and 

𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋.   

For 𝑀 = (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

)  be an (𝑚 + 𝑛) × (𝑚 + 𝑛)  positive semidefinite matrix with 𝑋[∗]𝐴 = (𝐴𝑋)[∗] , the Schur 

complement of 𝐴  in 𝑀  is 𝑋[∗]𝐴𝑋 − 𝑋[∗]𝐴𝐴†𝐴𝑋 = 𝑆  then the generalized inverse of 𝑀  is given by 𝑀[𝛼] =

(𝐴(𝛼) + 𝐴(𝛼)𝐵𝑆(𝛼)𝐶𝐴(𝛼) 𝐴(𝛼)𝐵𝑆(𝛼)

−𝑆(𝛼)𝐶𝐴(𝛼) 𝑆(𝛼)
)...(4.1), where 𝛼 ∈ {1,2,3,4}. 

  

Theorem 4.522  Let 𝑀 = (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) be an (𝑚 + 𝑛) × (𝑚 + 𝑛) positive semidefinite matrix, Let 𝑀[𝛼] be the form 

(4.1), for 𝛼 = 1, if 𝐴(1) and 𝑆(1) are {1}-inverse of 𝐴 and 𝑆 respectively then 𝑀[1] is a {1}-inverse of 𝑀 in I .   

Proof. By Theorem 4.2, since 𝑀 ≥I 0 ⇔ 𝐴 ≥I 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. Since 

𝐴 ≥I 0, 𝐴 is 𝐽 − 𝐸𝑃 from Definition 2.8 and Definition 3.1 it follows that 𝑁(𝐴) = 𝑁(𝐴[∗]). By using Lemma 4.3, we have 

𝑀 ≥I 0 ⇔ 𝐴 ≥I 0, 𝑁(𝐴) ⊆ 𝑁(𝐶), 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. 𝐴† is also a {1}-inverse of 𝐴.  

For 𝛼 = 1 in (4.1). 

We claim : 𝑀[1] is a {1}-inverse of 𝑀. 

Using Theorem 2.11 and Lemma 2.12 for the above conditions we get 𝐶 = 𝐶𝐴†𝐴 and 𝐵 = 𝐴𝐴†𝐵.  

𝑀 ∘ 𝑀[1] ∘ 𝑀    =     (
   𝐴     𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) (
𝐽𝑚 0
0 𝐽𝑛

) (
𝐽𝑚𝐴(1)𝐽𝑚 + 𝐽𝑚𝑋𝑆(1)𝑋[∗]𝐽𝑚 −𝐽𝑚𝐴(1)𝐴𝑋𝑆(1)𝐽𝑛

           −𝐽𝑛𝑆(1)𝑋[∗]𝐽𝑚           𝐽𝑛𝑆(1)𝐽𝑛

)

                                     (
𝐽𝑚 0
0 𝐽𝑛

) (
   𝐴    𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

)

                             =     (
  𝐴𝐽𝑚   𝐴𝑋𝐽𝑛

𝑋[∗]𝐴𝐽𝑚 𝑋[∗]𝐴𝑋𝐽𝑛
) (

𝐽𝑚𝐴(1)𝐽𝑚 + 𝐽𝑚𝑋𝑆(1)𝑋[∗]𝐽𝑚 −𝐽𝑚𝐴(1)𝐴𝑋𝑆(1)𝐽𝑛

        −𝐽𝑛𝑆(1)𝑋[∗]𝐽𝑚            𝐽𝑛𝑆(1)𝐽𝑛

)

                                     ( 
  𝐽𝑚𝐴    𝐽𝑚𝐴𝑋

𝐽𝑛𝑋[∗]𝐴 𝐽𝑛𝑋[∗]𝐴𝑋
)

                            =     ( 𝐴𝐴(1)𝐴 𝐴𝐴(1)𝐴𝑋
𝑋[∗]𝐴𝐴(1)𝐴 𝑋[∗]𝐴𝐴(1)𝐴𝑋

)

                            =     (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

)

                            =     𝑀                                                                                                                                       ■

 

                                                                                         

  

http://www.jetir.org/


© 2018 JETIR September 2018, Volume 5, Issue 9                            www.jetir.org  (ISSN-2349-5162)  
 

JETIRA006346 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 153 

 

Theorem 4.623  Let 𝑀 = (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) be an (𝑚 + 𝑛) × (𝑚 + 𝑛) positive semidefinite matrix, Let 𝑀[𝛼] be the form 

(4.1), for 𝛼 = (1,2), if 𝐴(1,2) and 𝑆(1,2) are {1,2}-inverse of 𝐴 and 𝑆 respectively then 𝑀[1,2]) is a {1,2}-inverse of 𝑀 in I .   

Proof. One can easily verify 𝑀[1,2] is a {1,2}-inverse of M.                                    ■ 

  

Theorem 4.724  Let 𝑀 = (
𝐴 𝐴𝑋
𝑋[∗]𝐴 𝑋[∗]𝐴𝑋

) be an (𝑚 + 𝑛) × (𝑚 + 𝑛) positive semidefinite matrix, Let 𝑀[𝛼] be the form 

(4.1), for 𝛼 = (1,3) , if 𝐴(1,3)  and 𝑆(1,3)  are {1,3} -inverse of 𝐴  and 𝑆  respectively with 𝑆(1,3)  Hermitian and 𝑟𝑘(𝑀) =

𝑟𝑘(𝐴) + 𝑟𝑘(𝑆). Then 𝑀[1,3] is a {1,3}-inverse of 𝑀 in I .   

Proof. By Theorem 4.2, since 𝑀 ≥𝐼 0 ⇔ 𝐴 ≥𝐼 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. Since 

𝐴 ≥𝐼 0, 𝐴 is 𝐽 − 𝐸𝑃 from Definition 2.8 and Definition 3.1 it follows that 𝑁(𝐴) = 𝑁(𝐴[∗]). By using Lemma 4.3, we have 

𝑀 ≥𝐼 0 ⇔ 𝐴 ≥𝐼 0, 𝑁(𝐴) ⊆ 𝑁(𝑋[∗]𝐴), 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. 𝐴† is also a {1,3}-inverse of 𝐴. For 

𝛼 = 1 in (4.1). 

By using Theorem 2.11 and Lemma 2.12 for the above conditions we get 𝑋[∗]𝐴 = 𝑋[∗]𝐴𝐴†𝐴, 𝐴𝑋 = 𝐴𝐴†𝐴𝑋 and 𝑋[∗]𝐴𝐴
.
†𝐴𝑋 ≥

𝑋[∗]𝐴𝑋. 

𝑀 ∘ 𝑀[1,3] = (
𝐴𝐴(1,3)𝐽𝑚 0

𝑋[∗]𝐴𝐴(1,3)𝐽𝑚 − 𝑆𝑆(1,3)𝑋[∗]𝐴𝐴(1,3)𝐽𝑚 𝑆𝑆(1,3)𝐽𝑛

) 

(𝑀 ∘ 𝑀[1,3])[∗] = (
𝐽𝑚 0
0 𝐽𝑛

) (
𝐴𝐴(1,3)𝐽𝑚 0

𝑋[∗]𝐴𝐴(1,3)𝐽𝑚 − 𝑆𝑆(1,3)𝑋[∗]𝐴𝐴(1,3)𝐽𝑚 𝑆𝑆(1,3)𝐽𝑛

)

∗

(
𝐽𝑚 0
0 𝐽𝑛

) 

 

              = (
𝐽𝑚(𝐴𝐴(1,3))[∗] (𝑋[∗]𝐴𝐴(1,3)𝐽𝑚 − 𝑆𝑆(1,3)𝑋[∗]𝐴𝐴(1,3)𝐽𝑚)[∗]

0 𝐽𝑛(𝑆𝑆(1,3))[∗]
). 

 

𝑟𝑘(𝑀 ∘ 𝑀[1,3])[∗] = 𝑟𝑘( 𝐽𝑚(𝐴𝐴(1,3))[∗]) + 𝑟𝑘(𝐽𝑚(𝑆𝑆(1,3))[∗]) = 𝑟𝑘(𝐴𝐴(1,3)𝐽𝑚) + 𝑟𝑘((𝑆𝑆(1,3)𝐽𝑛) 

= 𝑟𝑘(𝑀 ∘ 𝑀[1,3]) = 𝑟𝑘(𝐴) + 𝑟𝑘(𝑆) = 𝑟𝑘(𝑀).                                                ■ 

  

Theorem 4.825  Let M be an (𝑚 + 𝑛) × (𝑚 + 𝑛) positive semidefinite matrix, Let 𝑀[𝛼] be the form (4.1), for 𝛼 = (1,4), if 

𝐴(1,4) and 𝑆(1,4) are {1,4}-inverse of 𝐴 and 𝑆 respectively with 𝑆(1,4) Hermitian and 𝑟𝑘(𝑀) = 𝑟𝑘(𝐴) + 𝑟𝑘(𝑆). Then 𝑀[1,4] is 

a {1,4}-inverse of 𝑀 in I .   

Proof. By Theorem 4.2, since 𝑀 ≥I 0 ⇔ 𝐴 ≥I 0, 𝑋[∗]𝐴 = (𝐴𝑋)[∗], 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. Since 

𝐴 ≥𝐼 0, A is 𝐽 − 𝐸𝑃 from Definition 2.8 and Definition 3.1 it follows that 𝑁(𝐴) = 𝑁(𝐴[∗]). By using Lemma 4.3, we have 

𝑀 ≥𝐼 0 ⇔ 𝐴 ≥𝐼 0, 𝑁(𝐴) ⊆ 𝑁(𝑋[∗]𝐴), 𝑁(𝐴[∗]) ⊆ 𝑁((𝐴𝑋)[∗]) and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥ 𝑋[∗]𝐴𝑋. 𝐴† is also a {1,4}-inverse of 𝐴. For 

𝛼 = 1 in (4.1). 

By using Theorem 2.11 and Lemma 2.12 for the above conditions we get 𝑋[∗]𝐴 = 𝑋[∗]𝐴𝐴†𝐴, 𝐴𝑋 = 𝐴𝐴†𝐴𝑋 and 𝑋[∗]𝐴𝐴†𝐴𝑋 ≥
𝑋[∗]𝐴𝑋. 

 

       𝑀[1,4] ∘ 𝑀 = (
                     𝐽𝑚𝐴(1,4)𝐴       0

𝐽𝑚𝐴(1,4)𝐴𝑋 − 𝐽𝑚𝐴(1,4)𝐴𝑋𝑆(1,4)𝑆 𝐽𝑛𝑆(1,4)𝑆
) 

 

(𝑀[1,4] ∘ 𝑀)[∗] = (
𝐽𝑚 0
0 𝐽𝑛

) ( 
                     𝐽𝑚𝐴(1,4)𝐴       0

𝐽𝑚𝐴(1,4)𝐴𝑋 − 𝐽𝑚𝐴(1,4)𝐴𝑋𝑆(1,4)𝑆 𝐽𝑛𝑆(1,4)𝑆
)

∗

(
𝐽𝑚 0
0 𝐽𝑛

) 

 

                = (
(𝐴(1,4)𝐴)[∗]𝐽𝑚 (𝐽𝑚𝐴(1,4)𝐴𝑋 − 𝐽𝑚𝐴(1,4)𝐴𝑋𝑆(1,4)𝑆)[∗]

         0               (𝑆(1,4)𝑆)[∗]𝐽𝑛

). 

 

𝑟𝑘(𝑀[1,4] ∘ 𝑀)[∗] = 𝑟𝑘((𝐴(1,4)𝐴)[∗]𝐽𝑚) + 𝑟𝑘((𝑆(1,4)𝑆)[∗]𝐽𝑛) = 𝑟𝑘(𝐽𝑚𝐴(1,4)𝐴) + 𝑟𝑘(𝐽𝑛𝑆(1,4)𝑆) 

= 𝑟𝑘(𝑀[1,4] ∘ 𝑀) = 𝑟𝑘(𝐴) + 𝑟𝑘(𝑆) = 𝑟𝑘(𝑀).                                                ■ 
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